4.50/5
Klienci polecają!

Mikrofalowy sensor ruchu - 4-28V - RCWL-0516 - Czujnik Arduino

Kod produktu: 9463
  • RCWL-0516 to radarowy moduł czujnika ruchu dopplerowskiego, który może działać jako alternatywa dla czujnika ruchu PIR.
4,30 zł
/ szt.
Szczegóły

Mikrofalowy sensor ruchu - 4-28V

RCWL-0516

RCWL-0516 to radarowy moduł czujnika ruchu dopplerowskiego, który może działać jako alternatywa dla czujnika ruchu PIR, lub wraz z nim weryfikując wystąpienie ruchu tym samym ograniczając fałszywe detekcje.

Dane techniczne

  • Napięcie robocze: 4-28V
  • Prąd operacyjny: 2,8 mA (typowy); 3 mA (maks.)
  • Odległość wykrywania: do 9 m
  • Moc transmisyjna: 20 mW (typowa); 30 mW (maks.)
  • Napięcie wyjściowe: 3,2-3,4V
  • Maksymalne obciążenie wyjścia: 100 mA
  • Cyfrowe wyjście OUT domyślnie: 0V ruch - napięcie zasilania
  • Kontrola wstępna wysoki poziom: 3.3V
  • Temperatura pracy: -20 ~ 80 stopni Celsjusza
mikrofalowy sensor ruchu Mikrofalowy sensor ruchu mikrofalowy sensor ruchu

W zestawie

  • Mikrofalowy sensor ruchu - 4-28V - RCWL-0516 - Arduino - 1szt.
Opinie naszych klientów
Ocena:
4/5
Autor: Cezary, Staszów
Wskazówka: podane parametry dotyczą starszego urządzenia, a zdjęcie przedstawia "odradzany" sposób podłączenia! Pełniejszy opis aktualnego wariantu jest schowany pod: Najczęstsze pytania - Jest to nowsza czy starsza wersja układu? v
Ocena:
5/5
Autor: Witold, Grudziądz
Bardzo dobrze działa, ma bardzo duży zasięg. Polecam!
4/5
Najczęstsze pytania naszych klientów
Dokładnie istnieją (2) różne warianty modułów o podobnych oznaczeniach! Nowsze wersje łatwo odróżnić - chociaż strony elementów są prawie identyczne, to po drugiej stronie płytki mamy nowy stabilizator napięcia LDO. Zastosowano też inny tranzystor w.cz.
Zasadnicza różnica tkwi w zastąpieniu regulatora napięcia 3,3 V 100 mA 4-28 V wbudowanego w układ RCWL-9196 osobnym układem regulatora HT7133-1 3,3 V 20-30 mA 4-24 V 500 mW. Zrezygnowano z możliwości zasilania zewnętrznych układów z wyjścia 3V3 modułu, będących źródłem zakłóceń dla detektora. Tym samym wyjście to służy już tylko jako napięcie odniesienia.
"Aktualny" schemat i opis można znaleźć chyba tylko tutaj: 
Inne wspólne źródła - schematy ideowe i blokowe, logika sygnałów, charakterystyka emisji, pewne objaśnienia, zdjęcia:
 
Budowa i działanie:
Mikrofale odbijają się częściowo od konstrukcji, przedmiotów i przewodzących ciał, przenikają cienkie ścianki z tworzywa, papieru, szkła i innych materiałów - moduł można łatwo umieścić w "nieprzezroczystej" obudowie.
Wykrywanie ruchomych obiektów w pobliżu urządzenia opiera się na zmianach echa wynikających z interferencji oraz zasłaniania i odsłaniania odbić fal od różnych struktur, w tym związanych ze zjawiskiem Dopplera. Dzięki temu moduł reaguje na ruch ciała człowieka lub innych rzeczy nie tylko zbliżających lub oddalających się od czujnika, ale także w innych kierunkach, a nawet promieniowo.
Część radiowa płytki zawiera zbudowany na 1 tranzystorze oscylator Colpittsa, mieszacz i detektor z paskowym układem rezonansowym i antenką nadawczo-odbiorczą, pracujące w zakresie częstotliwości 2,9-3,2 GHz (długość fali około 9,5 cm). Ponieważ wymiary płytki i anteny są dużo krótsze niż długość fali, charakterystyka emisji nie jest kierunkowa (przypomina główkę sałaty), lecz można wyróżnić kierunki o lepszej i gorszej czułości. Może to mieć większe lub mniejsze znaczenie zależnie od geometrii przestrzeni.
Mieszające się sygnały powodują zmiany prądu stopnia, a odfiltrowany sygnał m.cz. jest następnie wzmacniany i obrabiany w hybrydowym układzie scalonym CMOS (podobnym do BISS0001). Tak jak w przypadku sygnału z czujnika podczerwieni przetwarzana jest nie częstotliwość, a jedynie fluktuacje amplitudy.
Wzmocnienie określa stosunek rezystancji (R4||R3)/R5*R17/R5. Dzięki pojemnościom w sprzężeniach układ adaptuje się do powolnych zmian, np. termicznych, a symetryczny komparator progowy reaguje na większe i szybsze zmiany. Sygnał wyjściowy VS jest dalej przetwarzany w części cyfrowej.
W stanie niepobudzonym/"bezczynności" na wyjściu cyfrowym OUT/VO jest stan logiczny niski (0). Kiedy ktoś lub coś wejdzie w skuteczny zasięg działania urządzenia bądź poruszy się, następuje zadziałanie przerzutnika i wygenerowanie dodatniego impulsu (stan wysoki OUT/VO=1).
Układ pracuje standardowo w trybie powtarzalnym/ciągłym/retriggerable (wejście A/Mode=1), tzn. nadal reaguje na ruch i zadziałanie detektora każdorazowo przedłuża impuls (kasuje licznik) - impuls wyjściowy zanika, jeśli w czasie Tx zależnym od wartości elementów R2 C2||C1 nie zostanie wykryty kolejny ruch.
(Uwaga: teoretycznie układ sterujący ma drugi tryb pracy: nieprzedłużania impulsów/bez ponownego wyzwalania/non-retriggerable (A/Mode=0), wtedy po wykryciu ruchu sygnał detektora jest blokowany i czas trwania impulsów jest stały (Tx) - ale układ ścieżek nie pozwala na ew. łatwe przełączenie - należałoby odlutować podłączoną do zasilania nóżkę nr 1, "podnieść" i podłączyć w powietrzu do masy.)
Po określonym czasie Tx od wykrycia ruchu (ostatniego - w domyślnym trybie powtarzalnym, pierwszego - w trybie nieprzedłużanych impulsów) następuje okres blokady sygnału detektora na krótki czas Ti zależny od wartości R13 C3 (około 0,2 s).
Podczas trwania impulsu Tx++ oraz Ti układ nie reaguje na światło ani sygnał blokady na wejściu VC/Enable - może sterować oświetleniem bez dodatkowych układów logicznych czy osłon, pozwala na właściwe kształtowanie wypełnienia sygnału VO/OUT oraz daje odporność na zakłócenia. Po tym czasie układ wraca do stanu gotowości - może zostać zablokowany sygnałem VC albo wykrywać ruch.
 
Przewidziano możliwość dostosowania stałej czasowej (czas podtrzymania impulsu) i wzmocnienia (czułości/zasięgu) do konkretnych zastosowań, jednak wymaga to dobrania i wlutowania dodatkowych elementów. Opcjonalny jest także czujnik oświetlenia z rezystorem dopasowującym. Zaplanowano otwory na fotorezystor THT oraz pola na podzespoły SMD wielkości 0805, ale udaje się zmieścić zwykłe "z wąsami", a nawet potencjometry.
Niekiedy zamiast wlutowania dodatkowych części dla uzyskania określonych celów może okazać się konieczna lub korzystna wymiana zamontowanych rezystorów lub kondensatorów, jednak jest to trudniejsze i bardziej wymagające. Nie należy ingerować w część mikrofalową układu - wszelkie modyfikacje mogą powodować niedopuszczalne zmiany roboczego pasma częstotliwości.
 
Należy przestrzegać pewnych zasad:
- czujnik nie może być zakryty przewodzącą osłoną, nie wolno umieszczać przewodów lub podobnych ekranów bliżej niż 1 cm od obwodu tranzystora i anteny, 
- część w.cz. modułu powinna wystawać ponad lub poza płytkę stykową, montaż płasko na płytce czy metalowej podstawie może rozstrajać i zaburzać działanie, 
- układ jest bardziej czuły od strony części radiowej, dużo mniej od strony wyprowadzeń, charakterystyka w płaszczyźnie prostopadłej do płytki jest praktycznie dookólna, 
- kilka modułów pracujących blisko siebie może się wzajemnie zakłócać, należy zachować odległości powyżej 1 m, 
- specjalnej troski wymaga współpraca z układami WiFi we wspólnej obudowie - oddalenie anten od siebie i metalowych konstrukcji, w tym płytek stykowych, "oddzielenie" i odsprzężenie zasilania.
 
Złącze J1 (metalizowane otwory do przylutowania listwy kołkowej 2,54 mm lub przewodów):
1 3V3 - wewnętrzne napięcie zasilania 3,3 V z regulatora napięcia - napięcie odniesienia, może też służyć do zasilania zewnętrznego obwodu pod warunkiem bardzo małego i stałego poboru prądu (bez pików), wszelkie zakłócenia na linii zasilania 3,3 V pogarszają czułość układu i mogą generować fałszywe impulsy 
2 GND - wspólna masa zasilania i sygnałów - minus zasilania 0 V 
3 OUT - wyjście przerzutnika - poziomy CMOS: normalnie stan niski 0 V, po wykryciu ruchu zmienia się na określony czas na stan wysoki 3 V (bez obciążenia) 
4 VIN - plus zasilania 4~24 V modułu, napięcie zasilania powinno być dosyć stabilne i odfiltrowane 
5 CDS - wejście zewnętrznego sygnału blokady (linia VC/Enable podciągnięta za pomocą R15 1 MΩ do zasilania Vdd=+3,3 V) lub alternatywne podłączenie zewnętrznego czujnika oświetlenia (pomiędzy CDS i GND): sygnał niski (VC=0, napięcie poniżej 0,7 V) blokuje czujnik ruchu (wyjście pozostaje zawsze niskie OUT=0), sygnał wysoki lub brak podłączenia (VC=1, napięcie powyżej 0,7 V) włącza normalną pracę (napięcie progowe VR≈0,2*Vdd≈0,7 V); uwaga: sygnał ten nie wyłącza oscylatora - nie wyłącza emisji mikrofal ani nie redukuje poboru prądu.
 
Punkty lutownicze na dodatkowe dobierane elementy: 
- CDS (R18) czujnik światła LDS-CDS THT 
Zainstalowanie fotorezystora pozwala na logiczne wyłączanie czujnika ruchu w ciągu dnia. Charakterystykę czujnika można dopasować do żądanego punktu przełączenia (dla danego natężenia oświetlenia, uwzględniając osłonę/soczewkę) montując odpowiedni rezystor na stykach R-CDS.
- R-CDS (R16) rezystor czujnika oświetlenia 
Rezystory R15||R16 i CDS tworzą na wejściu VC dzielnik napięciowy, próg przełączania komparatora napięcia to około 0,7 V (VR≈0,2*Vdd). Im mniejsza rezystancja R16 tym jaśniej musi być aby zablokować przerzutnik. Jeśli np. blokada/aktywacja ma następować przy oświetleniu, któremu odpowiada rezystancja czujnika CDS 7 kΩ należy zastosować R16 22 kΩ, dla 85 kΩ - 470 kΩ, bez R16 próg aktywacji CDS wynosi około 270 kΩ. 
- C-TM (C1) time - czas impulsu 
Dodatkowy kondensator zwiększający czas trwania impulsu wyjściowego OUT (dokładniej: czas Tx przedłużenia/opóźnienia impulsu od ostatniego wykrycia ruchu w domyślnym trybie albo czas impulsu Tx od pierwszej detekcji ruchu w ew. drugim trybie). Fabryczny czas Tx to około 2-2,5 s (R2=10 kΩ C2=10 nF). Dodatkowy kondensator C1 o pojemności 220 nF daje orientacyjnie 1 min, 1 μF - 4 min.
Czas Tx modułu z danymi elementami RC można obliczyć ze wzoru Tx=32768/f, gdzie f to zmierzona częstotliwość sygnału na nóżce nr 3 (RR1) układu 9196.
Zależnie od producenta układu podawane są różne wzory bezpośrednie na czas timerów: Tx≈24576*R2*(C2+C1) Ti≈24*R13*C3 albo (dwukrotnie dłuższe?) Tx=49152*RR1*RC1 Ti=48*RR2*RC2 (rezystancje i pojemności na odpowiednich nóżkach obu generatorów RC).
- R-GN (R3) gain - wzmocnienie 
Rezystor dla dostosowania wzmocnienia/czułości/dystansu wykrywania. Pozostawienie punktów niepodłączonych daje maksymalne wzmocnienie i zasięg do około 7 m. Wlutowanie dodatkowego rezystora R3 zmniejsza wzmocnienie (czułość układu) i skraca dystans. Rezystor 1 MΩ zmniejsza wzmocnienie dwukrotnie i odległość orientacyjnie do około 5 m, 470 kΩ do 2,5 m, 270 kΩ do 1,5 m.
Przy regulacji wzmocnienia trzeba wziąć poprawkę na obserwowany spadek czułości układu już po kilku godzinach pracy - może mieć związek z degradacją elementów nieprzystosowanych do wielkiej częstotliwości pracy lub zawilgoceniem laminatu.
 
Ważniejsze parametry:
- Napięcie zasilania (VIN) 4-24 V, pobierany prąd 2,5-3 mA (bez dodatkowego obciążenia).
- Całkowita moc emisji 20-30 μW.
- Odległość wykrywania ruchu do 5-7 m (zależnie od warunków i egzemplarza), zasięg można odpowiednio skrócić obniżając wzmocnienie za pomocą doboru R3 (1 MΩ ~ 150 kΩ).
- Stan niski na wyjściu sterującym (OUT=0): 0 V, stan wysoki (OUT=1): 3 V (bez obciążenia), obciążenie można podłączyć zarówno względem GND (source) jak i 3V3 (sink), czas trwania impulsu można wydłużyć wlutowując C1.
- Wyjście OUT posiada ograniczający rezystor szeregowy R1=100 Ω. Mała obciążalność wyjścia (prawdopodobnie +/-10 mA) wystarcza do wysterowania małego tranzystora bipolarnego, niskonapięciowego MOSFET, diody LED lub transoptora. Możliwe jest sterowanie dwoma diodami LED włączonymi pomiędzy 3V3 i GND.
- Napięcie wyjściowe (3V3): 3,2-3,4 V, całkowita wydajność regulatora napięcia do 20-30 mA.
- Temperatura pracy: -20 ~ +80°C.
- Wymiary płytki 36x17,3 mm.
- Popularne zastosowania: sterowanie oświetleniem, fotografia i filmowanie, czujnik obecności, alarmy i zabezpieczenia.

Nie znalazłeś odpowiedzi? Skorzystaj z pomocy naszego EKSPERTA

Zadaj pytanie
pixelpixelpixelpixel